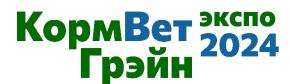
ФОРУМ

ІІ МЕЖДУНАРОДНЫЙ ФОРУМ «АКВАКУЛЬТУРА: COBPEMEHHЫE КОРМА И ТЕХНОЛОГИИ, АКТУАЛЬНЫЕ ТРЕНДЫ И ПЕРСПЕКТИВЫ»

москва | крокус экспо


22-23 ОКТЯБРЯ 2024

Применение технологий искусственного интеллекта и роботизации для аквакультуры

Тевяшов Г.К. н.с. Лаб. 80 Д.т.н., профессор Мещеряков Р. В.

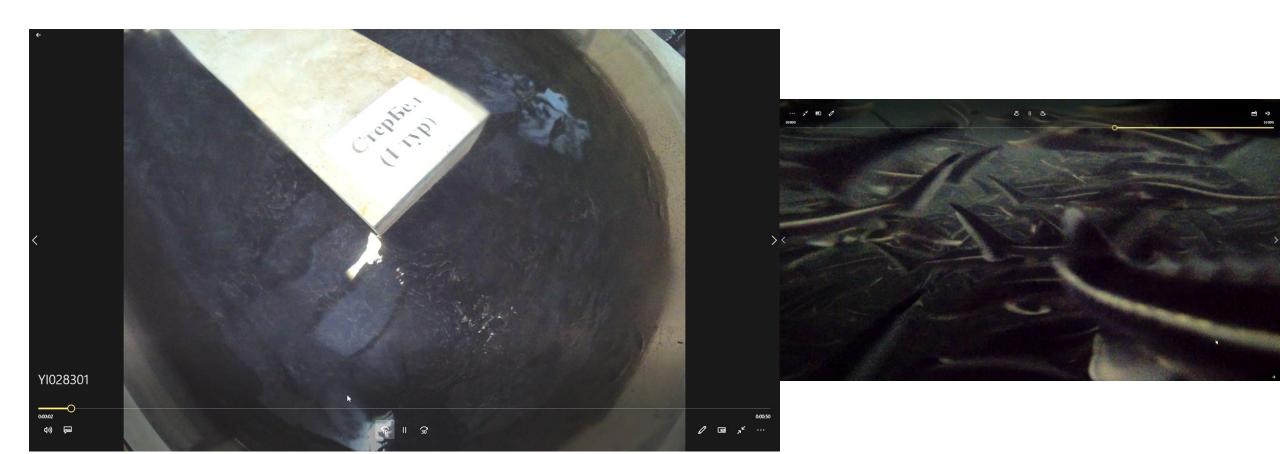
Экологический мониторинг в аквакультуре


В различных отраслях, включая рыбные производства, захватывают все большую значимость процессы цифровизации и внедрение киберфизических систем.

КФС предоставляют возможности для автоматизации, повышения эффективности, улучшения контроля и сокращения затрат.

Одним из важных аспектов цифровизации является применение камер и технического зрения для автоматизации и контроля различных процессов таких как наблюдение за состоянием рыбы, оптимизация процесса кормления, а также отслеживание поведенческой активности.

Задачи мониторинга в аквакультуре

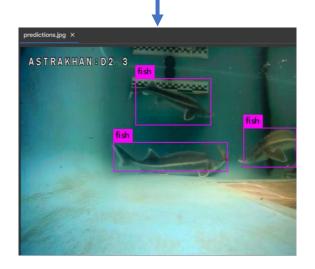


Для решения задач отслеживания качества воды зачастую используют стационарные станции мониторинга параметров воды.

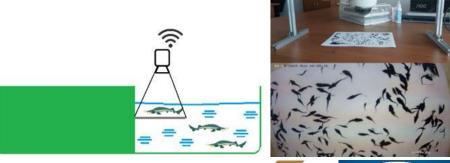
- Решаемые задачи:
- Мониторинг параметров качества воды является одной из важных задач. Это включает измерение температуры, рН, уровня кислорода, концентрации аммиака, нитратов, фосфатов и других веществ.
- Исследования по оценки уровня отходов жизнедеятельности, остатков корма и химических препаратов, используемых в аквакультуре.
- Мониторинг активности движений и взаимодействия между собой.
- Отслеживание заболеваемости и распространения болезней среди гидробионтов.
- Оценка использования ресурсов, энергии и воды.

Зачастую на производствах мониторинг параметров происходит вручную.

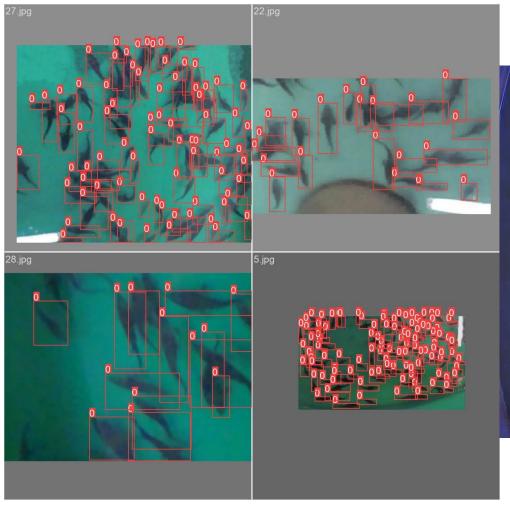
Использование СТЗ



= 22-23 ОКТЯБРЯ 2024

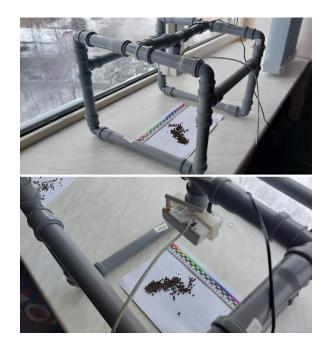

МОСКВА | КРОКУС ЭКСПО

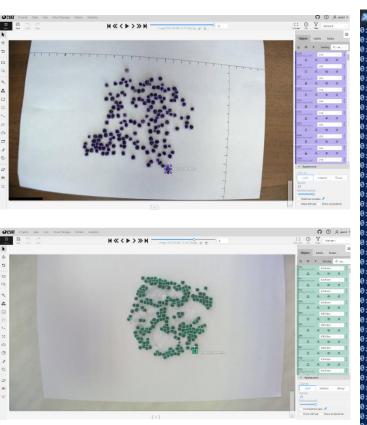
Разработка нейросетевого алгоритма

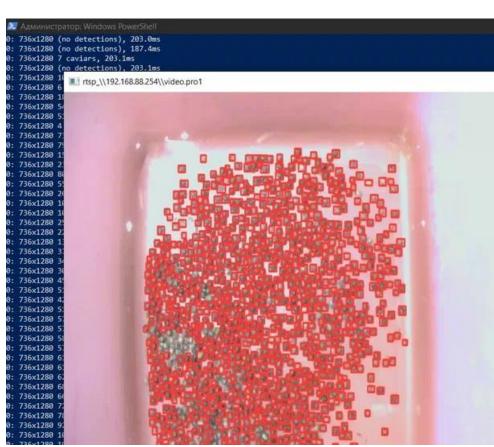


Результат распознавания

Разработка нейросетевого алгоритма ч.2

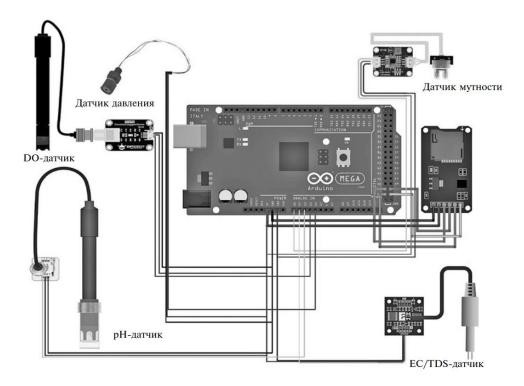

Разработка нейросетевого алгоритма ч.3




Подсчет икры

Стенд

Обучение (на черном перце и на имитации икры)



Результат

Система мониторинга параметров

	Α	В	С	D	E	F
1	Время (с)	рН (ед)	DO (мг/л)	TDS (ppm)	Мутность (NTU)	Температура (°C)
2	0	7,145967982	8,041266678	510,4499174	1,225843851	22,32856865
3	10	7,044872572	8,088042164	484,6685243	1,196487648	21,7597608
4	20	6,956946358	8,023337514	505,2177541	1,142676582	21,97857191
5	30	6,959836978	7,944276472	495,144807	1,194895189	21,76706297
6	40	7,030917551	8,127446132	506,8845765	1,386953631	21,91721964
7	50	7,007892407	7,783305336	502,0433399	1,179482943	22,3609631
8	60	6,977057476	8,106825259	505,99754	1,147847632	22,0153093
9	70	6,937823333	7,926796615	494,6270988	1,199326149	21,51274571
10	80	6,957092686	7,890646665	502,6024657	1,332527855	22,29455295
11	90	6,976244806	8,020206486	507,9876331	1,00116571	21,78798239
12	100	6,922543922	8,036777994	503,1175626	1,035677964	21,51566746
13	110	7,008176746	7,982418513	502,8677838	1,093391318	22,1777568
14	120	7,022689879	7,915816564	494,7203156	1,199786393	21,83229831
15	130	7,099092923	7,983960112	497,53642	1,197041921	21,09581902
16	140	7,098649241	8,217762057	498,7528118	1,308849211	21,72006184
17	150	6,943503493	8,117282952	487,9977849	1,313451237	22,72855833
18	160	6,965315259	7,947785765	507,5316077	1,407761664	22,23011872

Автоматизация процесса мониторинга с помощью цифровых датчиков и интеграции их в единую систему значительно уменьшает время и трудозатраты на контроль параметров воды в сравнении с ручным измерением.

Заключение

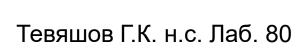
Сегментация и детекция рыб:

На примере сомовых нейросетевой алгоритм выделяет контур рыбы и присваивает идентификатор пока рыба находится в поле зрения камеры. Производится подсчет скорости выделенной особи для определения активности. Следующий шаг – определение размеров и составление карты активности.

Система мониторинга параметров воды:

Разработан макет системы и проведены первые опыты. В данный момент собираются макеты меньшего размера для установки в бассейны университетов (КГАВМ, МГУТУ)

Подсчет икры:


На текущий момент нейросетевой алгоритм распознает 95% икры, проблема заключается в бликах воды, а обучение было реализовано на "воздухе". Собран размечен датасет и предстоит обучение.

Искусственный пищевод:

Проектирование системы, которая позволяет дозированно и равномерно распределять корм, снижая потери и минимизируя перекорм или недокорм рыбы. Технология позволит более точно управлять процессом кормления в зависимости от вида, размера и возраста рыбы, что повышает производительность и снижает затраты на корма.

Спасибо за внимание

e

Д.т.н., профессор

Мещеряков Р. В.

ИПУ РАН

Россия, 117997, Москва ул. Профсоюзная, д. 65

+7 495 334-89-10

info@feedlot.ru

feedlot_ru

+7 (495) 649-62-88

lyubavasavkina

+7 (919) 764-29-76

